Ньютона кольца - meaning and definition. What is Ньютона кольца
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Ньютона кольца - definition

КОЛЬЦЕОБРАЗНЫЕ ИНТЕРФЕРЕНЦИОННЫЕ МАКСИМУМЫ И МИНИМУМЫ, ПОЯВЛЯЮЩИЕСЯ ВОКРУГ ТОЧКИ КАСАНИЯ СЛЕГКА ИЗОГНУТОЙ ВЫПУКЛОЙ ЛИНЗЫ И ПЛОСКОПАРАЛЛ
Ньютона кольца
  • Пример колец Ньютона
  • Образование тёмных и светлых интерференционных полос в клиновидном воздушном зазоре между двумя стеклянными пластинами. Зазор между поверхностями и [[длина волны]] световых волн для наглядности сильно преувеличены.

Ньютона кольца         

интерференционные Полосы равной толщины в форме колец, расположенные концентрически вокруг точки касания двух поверхностей (двух сфер, плоскости и сферы и т.д.). Впервые описаны в 1675 И. Ньютоном. Интерференция света происходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся тела; этот зазор играет роль тонкой плёнки, см. Оптика тонких слоев (См. Оптика тонких слоёв). Н. к. наблюдаются и в проходящем и - более отчётливо - в отражённом свете. При освещении монохроматическим светом (См. Монохроматический свет) длины волны Л, Н. к. представляют собой чередующиеся тёмные и светлые полосы. Светлые возникают в местах, где зазор вносит Разность хода между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равную целому числу λ. Тёмные кольца образуются там, где разность хода лучей равна целому нечётному числу λ/2. Разность хода определяется оптической длиной пути (См. Оптическая длина пути) луча в зазоре и изменением фазы световой волны при отражении (см. Отражение света). Так, при отражении от границы воздух - стекло фаза меняется на π, а при отражении от границы стекло - воздух остаётся неизменной. Поэтому в случае двух стеклянных поверхностей т-е тёмное Н. к. в отражённом свете соответствует разности хода (т. е. толщине зазора dm = mλ/2), где m - целое число. При касании сферы и плоскости (рис. 1) rm = (mλR)1/2. По теореме Пифагора, для треугольников с катетами rп и rm R2 = (R - λm/2)2 + rn2 и R2 = (R - λm/2)2 + r2m, откуда следует - в пренебрежении очень малыми членами (/2)2 и (/2)2 и др.- часто используемая формула для Н. к.: R = (rn2 - r2m)/λ(n - m). Эти соотношения позволяют с хорошей точностью определять λ по измеренным rm и rп либо, если λ известна, измерять радиусы поверхностей линз (рис. 2). Н. к. используются также для контроля правильности формы сферических и плоских поверхностей (рис. 3). При освещении немонохроматическим (например, белым) светом Н. к. становятся цветными, причём чередование цветов в них существенно отличается от обычного радужного из-за переналожения систем колец, соответствующих разным т. Наиболее отчётливо Н. к. наблюдаются при использовании сферических поверхностей малых радиусов кривизны (толщина зазора мала на большем расстоянии от точки касания).

Лит.: Шишловский А. А., Прикладная физическая оптика, М., 1961; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965.

А. П. Гагарин.

Рис. 1. К выводу соотношения между радиусами rm колец Ньютона в отражённом свете, радиусом R сферической линзы и длиной волны λ освещающего монохроматического света. О - точка касания сферы и плоскости; АА' = δm - толщина воздушного зазора в области образования m-го тёмного кольца. Применяя теорему Пифагора к прямоугольному треугольнику, малый катет (равный rm) которого составляет перпендикуляр, опущенный из A' на СО, получим rm = R2 - (R - δm)2 ≈ 2Rδm, откуда условие δm = λm/2 даёт .

Рис. 2. Фотография колец Ньютона в отражённом свете.

Рис. 3. Кольца Ньютона, полученные с посеребрёнными поверхностями. Извилины полос выявляют дефекты поверхностей.

НЬЮТОНА КОЛЬЦА         
чередующиеся светлые и темные кольца, наблюдающиеся при освещении монохроматическим светом, вокруг точки соприкосновения сферических поверхностей двух линз или выпуклой сферической линзы с плоской пластинкой. Возникают вследствие интерференции света в тонком воздушном промежутке (см. Оптика тонких слоев). Впервые наблюдались И. Ньютоном в 1675.
Кольца Ньютона         
Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И.

Wikipedia

Кольца Ньютона

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И. Ньютоном.